A novel loss-of-function mutation in the proton-coupled folate transporter from a patient with hereditary folate malabsorption reveals that Arg 113 is crucial for function.
نویسندگان
چکیده
Hereditary folate malabsorption (HFM) patients harbor inactivating mutations including R113S in the proton-coupled folate transporter (PCFT), an intestinal folate transporter with optimal activity at acidic pH. Here we identified and characterized a novel R113C mutation residing in the highly conserved first intracellular loop of PCFT. Stable transfectants overexpressing a Myc-tagged wild-type (WT) and mutant R113C PCFT displayed similar transporter targeting to the plasma membrane. However, whereas WT PCFT transfectants showed a 22-fold increase in [(3)H]folic acid influx at pH 5.5, R113C or mock transfectants showed no increase. Moreover, WT PCFT transfectants displayed a 50% folic acid growth requirement concentration of 7 nM, whereas mock and R113C transfectants revealed 24- to 27-fold higher values. Consistently, upon fluorescein-methotrexate labeling, WT PCFT transfectants displayed a 50% methotrexate displacement concentration of 50 nM, whereas mock and R113C transfectants exhibited 12- to 14-fold higher values. Based on the crystal structure of the homologous Escherichia coli glycerol-3-phosphate transporter, we propose that the cationic R113 residue of PCFT is embedded in a hydrophobic pocket formed by several transmembrane helices that may be part of a folate translocation pore. These findings establish a novel loss of function mutation in HFM residing in an intracellular loop of PCFT crucial for folate transport.
منابع مشابه
RED CELLS A novel loss-of-function mutation in the proton-coupled folate transporter from a patient with hereditary folate malabsorption reveals that Arg 113 is crucial for function
1The Fred Wyszkowski Cancer Research Laboratory, Department of Biology, Technion-Israel Institute of Technology, Haifa, Israel; 2Department of Child Neurology, Schneider Children’s Medical Center of Israel, Petach Tikva, Israel; 3Department of Medicine, C. Sheba Medical Center, Tel-Hashomer, Israel; 4Laboratory for Immunology and Hematology Research, Rabin Medical Center, Hasharon Hospital, Pet...
متن کاملIdentification of an Intestinal Folate Transporter and the Molecular Basis for Hereditary Folate Malabsorption
Folates are essential nutrients that are required for one-carbon biosynthetic and epigenetic processes. While folates are absorbed in the acidic milieu of the upper small intestine, the underlying absorption mechanism has not been defined. We now report the identification of a human proton-coupled, high-affinity folate transporter that recapitulates properties of folate transport and absorption...
متن کاملThe spectrum of mutations in the PCFT gene, coding for an intestinal folate transporter, that are the basis for hereditary folate malabsorption.
Hereditary folate malabsorption (HFM) is a rare autosomal recessive disorder caused by impaired intestinal folate absorption and impaired folate transport into the central nervous system. Recent studies in 1 family revealed that the molecular basis for this disorder is a loss-of-function mutation in the PCFT gene encoding a proton-coupled folate transporter. The current study broadens the under...
متن کاملFunctional roles of the A335 and G338 residues of the proton-coupled folate transporter (PCFT-SLC46A1) mutated in hereditary folate malabsorption.
The proton-coupled folate transporter (PCFT-SLC46A1) mediates intestinal folate absorption and folate transport across the choroid plexus, processes defective in hereditary folate malabsorption (HFM). This paper characterizes the functional defect, and the roles of two mutated PCFT residues, associated with HFM (G338R and A335D). The A335D-PCFT and other mutations at this residue result in an u...
متن کاملThe human proton-coupled folate transporter
This review summarizes the biology of the proton-coupled folate transporter (PCFT). PCFT was identified in 2006 as the primary transporter for intestinal absorption of dietary folates, as mutations in PCFT are causal in hereditary folate malabsorption (HFM) syndrome. Since 2006, there have been major advances in understanding the mechanistic roles of critical amino acids and/or domains in the P...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Blood
دوره 112 5 شماره
صفحات -
تاریخ انتشار 2008